
Call for Quality: Open Source Software Quality
Observation

Adriaan de Groot1, Sebastian Kügler1, Paul J. Adams2, and Giorgos
Gousios3

1 Quality Team, KDE e.V. {groot,sebas}@kde.org
2 Sirius Corporation Ltd. paul.adams@siriusit.co.uk
3 Athens University of Economics and Business gousiosg@aueb.gr

Summary. This paper describes how a Software Quality Observatory works to
evaluate and quantify the quality of an Open Source project. Such a quality mea-
surement can be used by organizations intending to deploy an Open Source solution
to pick one of the available projects for use. We offer a case description of how the
Software Quality Observatory will be applied to the KDE project to document and
evaluate its quality practices for outsiders.

Keywords

Open Source software, software quality evaluation, static code analysis

1 Introduction

The software development process is well known as a contributor to software
product quality, leading to application of software process improvement as
a key technique for the overall improvement of the software product. This
can be said for any form of software development. Within the Open Source
paradigm, the leverage of software quality data can be as useful for the end
users as it is for the developers.

From the perspective of a potential user of a piece of Open Source software
(OSS), it can be very difficult to choose one of a myriad solutions to a given
problem. There are often dozens of Open Source solutions which “compete”
for users and development resources. They may differ in quality, features,
requirements, etc. By making the quality aspects of a given project explicit,
it becomes easier for the user to choose a solution based on the quality of the
software. Here the Software Quality Observatory (SQO) can play a useful role
in quantifying the quality of processes employed by a given OSS project.



2 Authors Suppressed Due to Excessive Length

With ever increasing numbers of projects and developers on SourceForge
(www.sourceforge.net), it is clear that the OSS paradigm is of interest to
those wishing to contribute to the creation of software. By using scientifically
obtained software quality data, such as that which the Software Quality Ob-
servatory will produce, it may be possible to encourage similar growth within
the OSS user community.

2 The Benefits of Software Quality Observation

As participation has grown in Open Source development over the past decade,
so too has the user base of the software grown. Increasingly OSS is being
viewed as a viable alternative to proprietary (closed source) software, not just
by technically-aware developers, but also by non-developers. European re-
search projects, such as COSPA (www.cospa-project.org/) and CALIBRE
(www.calibre.ie), have raised awareness of OSS development through spe-
cific targeting of public administration bodies and industrial organisations,
especially small and medium enterprises (SMEs).

As the OSS paradigm makes progress within these organisations any po-
tential software procurer is tasked with some important questions which, cur-
rently, cannot be answered with any real assurance:

• Many OSS projects are very similar. How do we choose between them?
Which is the most appropriate system for the company’s IT infrastructure?

• How can we distinguish the “good” and “bad” projects?
• How can we reason about the quality of a software product in order to

trust its future development?

Unfortunately these organisations often have nothing more than word-of-
mouth on which to base their judgments of OSS products. With 109,7074

projects currently hosted on SourceForge it is understandable that products
of excellent quality may be overlooked. It is possible to supplement the word-
of-mouth tradition with some rudimentary data that is available from hosting
sites: download numbers, project activity etc. Unfortunately this data is easily
skewed and can present a product in an inaccurate manner.

Quality can be a very subjective measure of many aspects of a system in
combination: suitability for purpose, reliability, aesthetic etc. Software quality
is formally defined by the ISO/IEC 9126 standard as comprised of six char-
acteristics, but no measurement techniques are defined. It has been suggested
that the external quality characteristics of a software system are directly re-
lated to its internal quality characteristics. It is therefore possible to evaluate
the quality of software through its source code and a of project by considering
other data sources intimately related to the project’s code such as bug-fix
databases or mailing lists.
4 Data from the FLOSSMole Project, 02/12/05.



Call for Quality: Open Source Software Quality Observation 3

In the long run it is crucial to OSS developers and their projects to know
quantitatively what the quality of their product is. The volunteer nature of
OSS makes “managing” such a project to include quality control a matter of
motivating volunteers to behave in ways consistent with improving quality[2].
By fully understanding their software quality, OSS developers are able to
promote and improve their products and process. It is also crucial in helping
end-users making informed decisions about software procurement.

3 Why SQO of Open Source Software differs from that
on Closed Software

There are two aspects that play a role for quality assessment of software,
the quality of the product itself and the quality of the product team. The
main differences between quality assessment (QA) of Open Source software
and QA of closed source software naturally relate to the availability of the
source code and the transparency of the development process. Third party
quality assessment is facilitated by the availability of the source code and the
openness of the development process.

Quality assessment of OSS software is usually much more transparent than
that of closed source software, at least to quality observers on the “outside”
[2]. Most OSS projects use an Open Source tool-chain to create their software.
Those tools, compilers for example, have considerable influence on the quality
of the products and therefore need to be taken into account when assess-
ing the quality of a piece of software. Furthermore, discussion about quality
issues often happens in public, on mailing lists and message boards, which
adds transparency. Third-party quality assessment of closed source software
involves guessing in most cases.

The number of open bugs might give another impression of the quality of
a product. This number is to be taken with a grain of salt since the number
of bugs might indicate that there is a lot of testing, or that there are a lot of
people reporting bugs. The type of bugs, response times and their frequency
is important. Merely counting the number of bugs reveals more about the
community behind the product than about the product itself.

The number of code check-ins gives a good idea of the activity level of the
development of the product. Products that receive a lot of attention from de-
velopers are likely to be fixed faster than products that have been abandoned.
A product can be very actively developed, but that might also indicate that
it is unstable and many changes are being made which increase the amount
of effort needed to assess and maintain a certain level of quality.

Assessing the product team is another aspect where quality assessment of
OSS products differs from QA on closed source software. The term Product
Team refers to all participants in the project, engineers, documentation team,
translators, and of course QA people [3]. In closed software products, the
number and skill level of developers is usually kept secret by the company,



4 Authors Suppressed Due to Excessive Length

the number of participants in an OSS project can at least be estimated by
educated guessing, based on commit logs and the source code itself.

The size of the team is an important issue to examine the longevity of the
product, and thus the chance to have the product supported in the future.
The Open Source Maturity Model (OSMM) [2] uses team size explicitly as a
numeric indicator of quality.

4 The Software Quality Observatory

The automated analysis of source code as a quality measurement is not a new
concept. In recent years, the growth of OSS development has provided a wealth
of code in which new techniques can be developed. Previous work in this area
is often based in metric analysis: statement count, program depth, number of
executable paths or McCabe’s cyclomatic complexity [5] for example. In their
work using on metric-based analysis Stamelos et al. [7] observed good quality
code within Open Source. Other techniques, such as neural networks [4] are
not only capable of evaluating code, but also in predicting future code quality.

The Software Quality Observatory aims to provide a platform with a plug-
gable architecture as outlined in figure 1 for software development organisa-
tions that will satisfy four objectives:

• Promote the use of OSS through scientific evidence of its perceived quality.
• Enhance software engineers’ ability to quantify software quality.
• Introduce information extraction, data mining and unsupervised learning

to the software engineering discipline and exploit the possible synergies
between the two domains using novel techniques and algorithms.

• Provide the basis for an integrated software quality management product.

SQO-OSS is based around three distinct processing subsystems that share
a common data store. The data acquisition subsystem processes unstructured
project data and feeds the resultant structured data to the analysis stages.
The user interaction subsystem presents analysis results to the user and ac-
cepts input to affect the analysis parameters. The components of the data
acquisition subsystem are responsible for extracting useful data for analysis
from the raw data that is available from the range of sources within software
development projects. Metric analysis of source code is well-known and an
important aspect of this system. Repository analysis will perform examine
the commit behaviour of developers in response to user requests and security
issues. The information extraction component will extract structured informa-
tion from mailing lists and other textual source in order to feed higher-level
analyses.

The data mining component will use structured information from project
sources to predict the behaviour of the project with respect to quality charac-
teristics and classify projects according to their general quality measurements.
The statistical analysis component will apply statistical estimation models in



Call for Quality: Open Source Software Quality Observation 5

Analysis 
Results

Database

User interaction subsystem

Control 
engine

Presentation 
engine

SQO-OSS

Data acqusition 
subsystem

Information 
Extraction

Source code 
analysis

Repository 
analysis

Web 
Browser

Application
Mailing 

list

Bug 
Management

Database

Source 
code

Code Repository &
Versioning System

Data analysis 
subsystem

Data Mining

Statistical
Analysis

Fig. 1. A schematic representation of the proposed system

order to predict events in the development life-cycle that can have an impact
on the product’s quality.

5 The SQO and KDE

The KDE project (www.kde.org) is one of the largest desktop-oriented
projects in the world. Its scope encompasses the entire desktop (i.e. end-
user use of a computer, including web-surfing, email, office applications, and
games). It is a confederation of smaller projects all of which use a single plat-
form (the KDE libraries) for consistency. The project has some 1200 regular
contributors and many hundreds more translators. The source code has grown
to over 6 million lines of C++ in 10 years of “old-school” hacking.

KDE’s quality control system has traditionally been one of “compile early,
compile often.” By having hundreds of contributors poring over the code-base
on a wide range of operating systems and architectures, bugs were usually
found quickly. Certainly most glaring deficiencies are quickly found, but more
subtle bugs may not be.

In terms of formalized quality control, there is a commit policy which states
when something may be committed to the KDE repository [1], but this does
not rise much above the level of “if it compiles, commit it.” Only recently has
a concerted push been made for the adoption of unit tests within the KDE li-
braries. Adoption of the notion of writing unit tests has been enthusiastic, but



6 Authors Suppressed Due to Excessive Length

there are questions of coverage and completeness. Automated regression test-
ing is slowly being implemented, but here the lack of a standardized platform
for running the tests hampers the adoption of those automated tests.

Documentation (user and API) quality has become an issue, and quality
measurements are now done regularly. User interface guidelines have been for-
mulated, but not enforced. Once again, there is an effort underway to measure
(deviations from) the interface guidelines. This produces discouraging num-
bers, and has not yet been successfully automated in a large scale manner.

The KDE project expects the Software Quality Observatory to extend
and enhance the quality measurements which it has begun to implement, in
order to guide the actions of the KDE developers. Whether the availability
of quality metrics for the code base has an effect on the “average” volunteer
developer remains to be seen — experiences with the existing tools suggests
that fixing bugs found by automatic techniques does not score high on the
“fun” chart for developers. For the core KDE developers (of which there are
perhaps 100) the existence of the quality metrics produced by the SQO may
guide their efforts in bug fixing and yield more productive code freezes prior
to release.

6 Conclusions

Software quality observation has long been performed as a crucial element
in software process improvement. However, established methods of quality
observation have mostly focused on source code and overlooked other available
data sources e.g. mailing lists or bug fix data[6].

Many OSS projects, such as KDE, have established processes for the main-
tenance of software quality. However, these can only be of limited use when
then actual quality of the product is still unknown. By scientifically evaluating
the quality of a software product and not the process, software engineers can
leverage this knowledge in many ways. By providing this quality evaluation
the SQO-OSS system will allow engineers to make informed choices when ad-
dressing their development process and allow them to better maintain quality
in the future. The developers and their supporting organisations can also use
this evaluation to promote their product. This is especially crucial within the
OSS world, where there is a wealth of choice.

Ultimately, the SQO-OSS system will aid OSS developers to write better
software and enable potential users to make better informed choices.

References

1. KDE Developer’s Corner. KDE commit policy. On http://developer.kde.org/.
2. Bernard Golden. Succeeding with Open Source. Addison-Wesley, 2005.



Call for Quality: Open Source Software Quality Observation 7

3. Lewis R. Ireland. Quality Management for Products and Programs. Project
Management Institute, 1991.

4. R. Kumar, S. Rai, and J. L. Trahan. Neural-network techniques for software-
quality evaluation. In Proceedings of the Annual Reliability and Maintainability
Symposium, 1998.

5. T. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
2(4):308–320, 1976.

6. Diomidis Spinellis. Code Quality: The Open Source Perspective. Addison-Wesley,
Boston, MA, 2006.

7. Ioannis Stamelos, Lefteris Angelis, Apostolos Oikonomou, and Georgios L. Bleris.
Code quality analysis in open source software development. Information Systems
Journal, 12(1):43–60, January 2002.


